1. The aerodynamic lift of the wing is described by the distributed load of

\[w = -300\sqrt{1 - 0.04x^2} \text{ N/m}. \]

The mass of the wing is 27 Kg, and its center of mass is located 2 m from the wing root \(R \).

a. Determine the magnitude of the force and the moment about \(R \) exerted by the lift of the wing.

The magnitude of the force \(F \) is equal to the area between the curve of

\[w = -300\sqrt{1 - 0.04x^2} \text{ and x-axis. Thus} \]

\[F = -\int_0^5 300\sqrt{1 - (0.2x)^2} \, dx = -300\int_0^2 \sqrt{1 - y^2} \, dy = -1500\int_0^2 \sqrt{1 - y^2} \, dy \]

\[= -1500\left[\frac{1}{2} \left(y\sqrt{1 - y^2} + 1^2 \cdot \arcsin\left(\frac{y}{1}\right) \right) \right]^2_0 = -1500\frac{1}{2}(\arcsin(1) - \arcsin(0)) = -1500\frac{\pi}{4} = -375\pi \]

The magnitude of the Moment \(M \) is equal to the following

\[M = \int_0^5 x \cdot w \, dx = -300\int_0^5 x \cdot \sqrt{1 - (0.2x)^2} \, dx = -7500\int_0^2 y \cdot \sqrt{1 - y^2} \, dy = -7500\int_0^{\pi/2} \sin t \cos^2 t \, dt \]

\[= -7500\int_0^{\pi/2} \left(\sin t - \sin^3 t \right) dt = -7500\left(-\cos t + \frac{2}{3} \cos^3 t \right)^{\pi/2}_0 = -7500\left(1 - \frac{2}{3} \right) = \frac{7500}{3} = -2500 \text{N} \cdot \text{m} \]

The location of the center of lift force is as follows

\[x = \frac{M}{F} = \frac{2500}{375\pi} = 2.122 \text{m} \]

b. Determine the reactions on the wing at \(R \).

Reaction force: \(- (F + mg) = 375\pi - 27 \cdot 9.8 = 913.5 \text{N} \)

Reaction moment: \(-M - (M + mg \cdot 2) = 2500 - 27 \cdot 9.8 \cdot 2 = 2500 - 529.2 = 1970.8 \text{N} \cdot \text{m} \)
2. Given a beam under distributed loads, develop a MATLAB program to determine the equivalent resultant force of the distributed loading and its location, measure from point A. (Hint: type 'help quad' in MATLAB command window, and read the description) Use the values, C_1=5, C_2=16, a = 3 and b = 1.

```matlab
rc = 15;
a = 1;
b = 1;
p = acos(-1);

% distribution loads function
W = @(x)sqrt((rc*x + sqrt(2*r*c2*x^2 + 4))); % distribution moment function
M = @(x)W(x)*sqrt(1 - 0.5*x/a); % distribution torque function
F = @(x)3*W(x)/a;
hold on;
p = -300:50:300;
plot([0,a],[0,0],'-k','linewidth',5);
plot([a,b],[0,0],'-b','linewidth',5);

X = 1.681
Y = 10.06

disp('Equivalent resultant force in a = 10.0556')
disp('The location of center = 1.6814')
disp('Equivalent resultant force in b = 4.7639')
disp('The location of center = 3.5104')
```
3. Consider an airfoil with chord length c and running distance x measured along the chord. The leading edge is located at $(x/c) = 0$ and the trailing edge at $(x/c) = 1$. The pressure coefficient variations over the upper and lower surfaces are given, respectively, as

$$C_{p,u} = 1 - 300 \left(\frac{x}{c} \right)^2 \quad \text{for} \quad 0 \leq \left(\frac{x}{c} \right) \leq 0.1$$

$$C_{p,l} = -2.2277 + 2.2777 \left(\frac{x}{c} \right) \quad \text{for} \quad 0.1 \leq \left(\frac{x}{c} \right) \leq 1.0$$

$$C_{p,l} = 1 - 0.95 \left(\frac{x}{c} \right) \quad \text{for} \quad 0 \leq \left(\frac{x}{c} \right) \leq 1.0$$

a. Using MATLAB, plot the pressure distribution

b. Calculate the normal force coefficient

$$C_p = C_{pl} - C_{pu} = \begin{cases}
-0.95 \left(\frac{x}{c} \right) + 300 \left(\frac{x}{c} \right)^2 & \text{for} \quad 0 \leq \left(\frac{x}{c} \right) \leq 0.1 \\
3.2277 - 3.2277 \left(\frac{x}{c} \right) & \text{for} \quad 0.1 \leq \left(\frac{x}{c} \right) \leq 1.0
\end{cases}$$
c. Calculate the location of center of pressure

\[X_c = 0.378 \]
\[F = 1.402 \]

4. The figure shown below represents the pressure distribution on a NACA2412 airfoil section at \(\alpha = 5 \) degree. For a quick estimation of lift coefficient, these curves are approximated as the dotted line as shown.

a. Find the estimated value of lift coefficient

\[
C_{pu} = \begin{cases}
-2 + 7 \left(\frac{x}{c} \right) & \text{for } 0 \leq \left(\frac{x}{c} \right) \leq 0.1 \\
-1.4444 + 1.4444 \left(\frac{x}{c} \right) & \text{for } 0.1 \leq \left(\frac{x}{c} \right) \leq 1
\end{cases}
\]
\[
C_{pl} = \begin{cases}
1 - 7.5 \left(\frac{x}{c} \right) & \text{for } 0 \leq \left(\frac{x}{c} \right) \leq 0.1 \\
0.2777 - 0.2777 \left(\frac{x}{c} \right) & \text{for } 0.1 \leq \left(\frac{x}{c} \right) \leq 1
\end{cases}
\]

\[
C_p = \begin{cases}
3 - 14.5 \left(\frac{x}{c} \right) & \text{for } 0 \leq \left(\frac{x}{c} \right) \leq 0.1 \\
1.7222 - 1.7222 \left(\frac{x}{c} \right) & \text{for } 0.1 \leq \left(\frac{x}{c} \right) \leq 1
\end{cases}
\]

b. Find the estimated location of center of lift

Force: 0.9250

Location of the center: 0.31261

Related Topics:

MATLAB Assignment Help